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An invariant structure of the multi-particle correlations of
the two-dimensional one-component plasma
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Republic

Received 23 June 1997

Abstract. The model under consideration is that of a two-dimensional one-component plasma
confined to the surface of a sphere. In the canonical format, the system is mapped onto a discrete
one-dimensional anticommuting-field theory. A unitary transformation of anticommuting
variables is revealed to generate a correlation hierarchy, truncated rigorously at each hierarchical
level. In the thermodynamic limit of the fluid regime, this truncation provides a specific invariant
structure of multi-particle densities of the plasma formulated on an infinite plane.

1. Introduction

Coulomb systems are the touchstone for investigating the effect of long-range interactions
in the thermodynamics of classical fluids. The long-range tail of the Coulomb potential
causes screening and neutrality in a charge system, and thus gives rise to exact constraints
(sum rules) for correlations functions (for a review, see [1]), like the zeroth- and second-
moment conditions [2, 3], the shift of the compressibility equation to the fourth-moment
condition [4–6], etc. The Debye–Ḧuckel theory (valid in the region of low densities and
small couplings [7]), applied extensively as the basic mean-field method to general fluids,
also has its origin in Coulomb models.

The specialization to two dimensions (2D) and to the one-component plasma (OCP)
brings some physical as well as mathematical peculiarities. The latter include a formal
relationship to the fractional quantum Hall effect [8], experimental evidence for Wigner
crystallization at low temperatures [9], the dependence of the statistics on only the parameter
coupling constant0 ∼ 1/temperature (the charge density scales appropriately the distance),
the knowledge of the equation of state [10], the mapping to free fermions at special coupling
0 = 2 [11] (the only completely solvable state of a fluid in 2D), and so on. It was suggested
that the 2D OCP is in the critical state at arbitrary0 [12, 13], namely the electrical-field
correlations (but not the particle correlations) display a power-law decay at asymptotically
large distances, and so the free energy is supposed to exhibit a finite-size correction predicted
by the conformal-invariance theory.

Quite recently, a symmetry of the infinite 2D OCP with respect to a complex
transformation of particle coordinates was observed for arbitrary coupling0 [14]. The
resulting functional relation for the two-body density is equivalent to an infinite sequence
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of sum rules relating the coefficients of its short-distance expansion. The present work
is a natural continuation of this study. It originates from an attempt to explore how the
symmetry manifests itself in the case of general multi-particle densities. The problem is
that in the derivation of the functional relation for the two-body density the dependence
of the latter exclusively on the relative particle distance was crucial. Many-body densities
are more complex functions of particle coordinates, and so another sophisticated approach
providing some new extra information is necessary.

Here, we propose (within the canonical format) a method based on the duality between
the continuous 2D OCP (in particular, confined to the surface of a sphere) and a discrete
1D anticommuting-field theory [14]. The coefficients of the short-distance expansion of
multi-particle densities of the 2D OCP are expressed in terms of fermionic correlators
of the 1D anticommuting-field theory (hereinafter, the fermion and the anticommuting
variable are understood to be equivalent). A unitary transformation of anticommuting
variables is then used to generate a specific hierarchy of identities, each of which relates
a fermionic correlator of a given order with a combination of fermionic correlators of
one order higher. The hierarchy is closed at every level, i.e. there exists a rigorous
procedure to reduce the order of higher correlators by one. The consequent closed-form
relations for fermionic correlators of the same order have, in the thermodynamic limit
of the fluid regime, a fundamental impact on the form of the multi-particle densities
of the 2D OCP. These, to the present knowledge being general unspecified functions
of particle coordinates, are shown to involve particle coordinates only in a finite set
of specific polynomial combinations (invariants). The invariant structure of the multi-
body densities is equivalent to an infinite sequence of functional relations for the particle
densities of the same order, strongly restricting the possible forms of the latter, and so
it represents a step towards the potential complete integrability of the 2D OCP. Standard
approaches to Coulomb systems, e.g. based on some approximate truncation of the BBGKY
hierarchy of equations, do not pass the test of the established invariant-form of particle
densities.

The paper is outlined as follows. Section 2 is devoted to the definition of the
spherical 2D OCP, its stereographic projection to a plane and the consequent mapping,
at coupling constant0 an even integer, to a 1D anticommuting-field model. The multi-
particle densities of the plasma are expressed in terms of fermionic correlators. Section 3
deals with ordinary symmetries of the anticommuting-field theory, having the origin in the
interchange symmetry and anticommutation relations among the field-components, and a
Hankel-like form of the fermionic action. The factorization of variables in anticommuting
integrals implies an important set of interrelations among the fermionic correlators; they
will be called ‘microscopic sum rules’ because of their close relationship to the ordinary
momentum constraints. In section 4, we propose the unitary transformation of fermionic
variables providing a correlation hierarchy of equations. The mechanism of the hierarchy
truncation is explained in detail. The resulting closed-form relations are solved formally
by using the method of generating functions in section 5. Here, some new exact results
for the spherical OCP are discussed. Section 6 concerns the thermodynamic limit of the
plasma which is identified with the transition from the sphere to an infinite planar system
possessing the circular symmetry. Apart from some explicit prefactors, the multi-particle
densities are shown to depend on particle coordinates via special ‘elementary’ homogeneous
polynomials, symmetric with respect to any variable interchange and invariant under a
uniform shift in all variables. Concluding remarks and some applications are given in
section 7.
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2. Preliminary formalism

The classical OCP, confined to the surface of a sphere of radiusR, is a continuous system
of N identical pointlike particlesi = 0, 1, . . . , N − 1 of chargee embedded in a spatially
uniform neutralizing background of charge density−en0, wheren0 = N/

(
4πR2

)
. The

system possesses perfect rotational symmetry, with no point having special status. The
Coulomb potential created at point 2 on the sphere by a unit charge located at point 1 on
the sphere plus the neutralizing unit charge uniformly distributed over the sphere is (see
e.g. [8])

V12 = − ln
(

sin 1
2τ12

)+ constant (2.1)

where τ12 is the angular distance between the two points and the value of the additive
constant, put to zero, is irrelevant when calculating particle densities. The corresponding
Boltzmann weight factor at temperatureT equals to sin2γ (τ12/2), where 2γ = e2/kBT (=0)
is the coupling constant. The canonical partition function of the background-particle system
thus reads

Z(γ ) = 1

N !

∫ N−1∏
i=0

dσi
4π

∏
i<j

sin2γ 1
2τij (2.2)

where dσ = R2 d(cosθ) dφ is the surface element of the sphere. Hereinafter, we omit in
the notation the dependence on the particle numberN .

The correspondence with an infinite planar domain can be obtained by a stereographic
projection of each point(θ, φ) from the south pole (θ = π ) on the tangent plane to the
north pole, with the complex coordinate in this plane being 2Rz:

z = tan(θ/2) eiφ. (2.3)

Since

dσ

4π
= dz ∧ dz̄

2π i

R2

(1+ zz̄)2 =
d2z

π

R2

(1+ zz̄)2 (2.4)

sin2(τij /2) = |zi − zj |2
(1+ zi z̄i)(1+ zj z̄j ) (2.5)

the partition function (2.2) in the planar format reads

Z(γ ) = 1

N !

∫ N−1∏
i=0

d2zi w(zi, z̄i)
∏
i<j

|zi − zj |2γ (2.6a)

w(z, z̄) = 1

π

1

(1+ zz̄)γ (N−1)+2
(2.6b)

where we have dropped an irrelevant prefactorR2N .
The canonical multi-particle densities on the sphere are defined as follows:

n1(θ, φ) = 1

J (x, x̄)

〈∑
i

δ(zi − x) δ(z̄i − x̄)
〉

(2.7a)

n2(θ1, φ1|θ2, φ2) = 1

J (x1, x̄1) J (x2, x̄2)

〈∑
i 6=j

δ(zi − x1) δ(z̄i − x̄1) δ(zj − x2) δ(z̄j − x̄2)

〉
(2.7b)
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n3(θ1, φ1|θ2, φ2|θ3, φ3) = 1

J (x1, x̄1) J (x2, x̄2) J (x3, x̄3)

×
〈 ∑
(i 6=j)6=k

δ(zi − x1) δ(z̄i − x̄1) δ(zj − x2)δ(z̄j − x̄2) δ(zk − x3) δ(z̄k − x̄3)

〉
(2.7c)

etc, whereJ (x, x̄) = 4R2/(1+ xx̄)2 is the Jacobian of the mapping(θ, φ) → 2R(x, x̄)
and the averaging is taken over the planar measure given in (2.6). Denotingn′1(x, x̄) =〈∑

i δ(zi−x) δ(z̄i− x̄)
〉
, n′2(x1, x̄1|x2, x̄2) =

〈∑
i 6=j δ(zi−x1) δ(z̄i− x̄1) δ(zj −x2) δ(z̄j − x̄2)

〉
and so on, the partition function (2.6) is the generating functional in the sense that

n′1(x, x̄) = w(x, x̄)
δ

δw(x, x̄)
lnZ (2.8a)

n′2(x1, x̄1|x2, x̄2)− n′1(x1, x̄1) n
′
1(x2, x̄2) = w(x1, x̄1) w(x2, x̄2)

δ

δw(x2, x̄2)

[
n′1(x1, x̄1)

w(x1, x̄1)

]
(2.8b)

n′3(x1, x̄1|x2, x̄2|x3, x̄3)− n′2(x1, x̄1|x2, x̄2)n
′
1(x3, x̄3) = w(x1, x̄1) w(x2, x̄2) w(x3, x̄3)

× δ

δw(x3, x̄3)

[
n′2(x1, x̄1|x2, x̄2)

w(x1, x̄1) w(x2, x̄2)

]
(2.8c)

etc.
For γ positive integer, it has been shown in [14] that the partition function of the

form (2.6a) can be expressed in terms of Grassmann variables
{
ξ
(α)
i , ψ

(α)
i

}
(α = 1, . . . , γ ),

defined on a discrete chain ofN sites i = 0, 1, . . . , N − 1 and satisfying the ordinary
anticommuting algebra and integral rules [15], as follows:

Z(γ ) =
∫
Dψ Dξ eS(ξ,ψ) (2.9a)

S(ξ, ψ) =
γ (N−1)∑
i,j=0

4iwij9j . (2.9b)

Here, Dψ Dξ ≡ ∏N−1
i=0 dψ(γ )

i . . .dψ(1)
i dξ (γ )i . . .dξ (1)i and the actionS involves pair

interactions of ‘composite’ operators

4i =
N−1∑

i1,...,iγ=0
(i1+···+iγ=i)

ξ
(1)
i1
. . . ξ

(γ )

iγ
(2.10a)

9j =
N−1∑

j1,...,jγ=0
(j1+···+jγ=j)

ψ
(1)
j1
. . . ψ

(γ )

jγ
(2.10b)

i.e. the products ofγ anticommuting-field components with the fixed sum of site indices.
The interaction strength is given by

wij =
∫

d2z zi z̄jw(z, z̄) (2.11)

for the model under consideration (2.6) it takes the diagonal formwij = δijwi with

wi = B[i + 1, γ (N − 1)− i + 1] = i![γ (N − 1)− i]!
[γ (N − 1)+ 1]!

(2.11′)

whereB is the beta function.
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After some algebra, the densities (2.7) (written with planar arguments for simplicity)
are expressible in the fermionic format as

n1(x, x̄)

n0
= 1

N

1

(1+ xx̄)γ (N−1)

γ (N−1)∑
i=0

〈4i9i〉(xx̄)i (2.12a)

n2(x1, x̄1|x2, x̄2)

n2
0

= 1

N2

1

(1+ x1x̄1)γ (N−1)

1

(1+ x2x̄2)γ (N−1)

×
γ (N−1)∑

i1,j1,i2,j2=0
(i1+i2=j1+j2)

〈4i19j14i29j2〉xi11 x̄
j1
1 x

i2
2 x̄

j2
2 (2.12b)

n3(x1, x̄1|x2, x̄2|x3, x̄3)

n3
0

= 1

N3

1

(1+ x1x̄1)γ (N−1)

1

(1+ x2x̄2)γ (N−1)

× 1

(1+ x3x̄3)γ (N−1)

γ (N−1)∑
i1,j1,i2,j2,i3,j3=0

(i1+i2+i3=j1+j2+j3)

〈4i19j14i29j24i39j3〉xi11 x̄
j1
1 x

i2
2 x̄

j2
2 x

i3
3 x̄

j3
3

(2.12c)

etc. Here, 〈· · ·〉 = ∫
Dψ Dξ exp(S) . . . /Z(γ ) and we have taken into account that

for the ‘diagonalized’ actionS = ∑
i 4iwi9i only correlators〈4i19j14i29j2 . . .〉 with

i1 + i2 + · · · = j1 + j2 + · · · survive. Under our convention, the order of a correlator
〈4i19j14i29j2 . . .〉 equals to the total number of4’s (or 9 ’s) involved. For generalp-body
density, the above scheme generalizes straightforwardly to

np(x1, x̄1| . . . |xp, x̄p)
n
p

0

= 1

Np

p∏
i=1

1

(1+ xi x̄i)γ (N−1)

×
γ (N−1)∑

i1,j1,...,ip,jp=0
(i1+···+ip=j1+···+jp)

〈4i19j1 . . . 4ip9jp 〉xi11 x̄
j1
1 . . . x

ip
p x̄

jp
p . (2.12d)

A p-correlator〈4i19j1 . . . 4ip9jp 〉 (p 6 N ) may be nonzero only if

1
2γ (p − 1)p 6 i1+ · · · + ip = j1+ · · · + jp 6 γp

[
N − 1

2(p + 1)
]
.

In order to maintain the clarity of the presentation, we will analyse in detail the symmetry
and transformation properties of one-body density (one-correlators), or if need be two-
body density (two-correlators), and afterwards write down the corresponding final result for
generalp-particle density, in accordance with formula (2.12d).

3. Ordinary symmetries and microscopic sum rules

The two sets of Grassmann variables
{
ξ
(α)
i

}
,
{
ψ
(α)
i

}
(and the respective composites

{4i}, {9i}) are in a certain sense complementary to one another. For mathematical reasons
it turns out to be useful to consider one set of composite variables, e.g.{4i}, in the
‘decomposite’ representation4i =

∑
i1+···+iγ=i ξ

(1)
i1
. . . ξ

(γ )

iγ
, while keeping {9i} in the
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composite form. The action is then written as

S =
N−1∑

i1,...,iγ=0

ξ
(1)
i1
. . . ξ

(γ )

iγ
wi1,...,iγ 9i1+···+iγ (3.1a)

wi1,...,iγ =
(i1+ · · · + iγ )![γ (N − 1)− (i1+ · · · + iγ )]!

[γ (N − 1)+ 1]!
. (3.1b)

3.1. Ordinary symmetries

The correlators, induced by the action (3.1), exhibit two kinds of symmetries.
The first (trivial) one is based on the interchange and anticommutation properties of

Grassmann operators. The interchange of a pair of field indices, say 1 and 2, results in the
symmetry 〈

ξ
(1)
i1
ξ
(2)
i2
. . . 9u

〉 = 〈ξ (1)i2 ξ (2)i1 . . . 9u
〉

(3.2a)〈
ξ
(1)
i1
ξ
(2)
i2
. . . 9uξ

(1)
j1
ξ
(2)
j2
. . . 9v

〉 = 〈ξ (1)i2 ξ (2)i1 . . . 9uξ
(1)
j2
ξ
(2)
j1
. . . 9v

〉
(3.2b)

where allξ (α)iα
with α = 3, . . . , γ , untouched by the concrete realization of the symmetry

transformation, are represented by points (note that ifu 6= i1 + · · · + iγ in (3.2a) or
u + v 6= i1 + · · · + iγ + j1 + · · · + jγ in (3.2b), these equations correspond to 0= 0).
The anticommutation property of the operators implies the symmetry relations for two- and
higher-order correlators of the form〈

ξ
(1)
i1
. . . 9uξ

(1)
j1
. . . 9v

〉 = −〈ξ (1)j1
. . . 9uξ

(1)
i1
. . . 9v

〉
(3.3a)

= (−1)γ
〈
ξ
(1)
i1
. . . 9vξ

(1)
j1
. . . 9u

〉
(3.3b)

etc.
The second class of symmetries is closely related to the explicit form of the coupling

(3.1b). As wi1,...,iγ = wN−1−i1,...,N−1−iγ , we get at once〈
ξ
(1)
i1
. . . ξ

(γ )

iγ
9u
〉 = 〈ξ (1)N−1−i1 . . . ξ

(γ )

N−1−iγ 9γ (N−1)−u
〉

(3.4a)〈
ξ
(1)
i1
. . . ξ

(γ )

iγ
9uξ

(1)
j1
. . . ξ

(γ )

jγ
9v
〉

= 〈ξ (1)N−1−i1 . . . ξ
(γ )

N−1−iγ 9γ (N−1)−uξ
(1)
N−1−j1

. . . ξ
(γ )

N−1−jγ 9γ (N−1)−v
〉
. (3.4b)

Another large set of symmetries follows from the Hankel-like nature ofwi1,...,iγ = wi1+···+iγ
(we recall that the ordinary Hankel matrix is defined bywi,j = wi+j ). Let us consider the
quantity

δS = −x
N−1∑

i1,i2,...=0

wi1+i2+···ξ
(2)
i1
ξ
(2)
i2
. . . 9i1+i2+··· − y

N−1∑
i1,i2,...=0

wi1+i2+···ξ
(2)
i1−1ξ

(2)
i2
. . . 9i1+i2+···

(3.5)

whereξ (2)−1 ≡ 0. The first term on the right-hand side of (3.5) evidently equals to zero due

to the anticommutation relations among
{
ξ
(2)
i

}
, while the second one can be easily reduced

to

−y
N−2∑
i1=0

N−1∑
i3,...=0

wi1+N+···ξ
(2)
i1
ξ
(2)
N−1 . . . 9i1+N+···.
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Then〈
ξ
(1)
i1
ξ
(1)
i2
. . . 9uξ

(1)
j1
ξ
(1)
j2
. . . 9ve

δS
〉 = 〈ξ (1)i1 ξ (1)i2 . . . 9uξ

(1)
j1
ξ
(1)
j2
. . . 9v

×
(

1− y
N−2∑
i1=0

N−1∑
i3,...=0

wi1+N+··· ξ
(2)
i1
ξ
(2)
N−1 . . . 9i1+N+···

)〉
= 0 (3.6)

where we have applied(δS)2 = (δS)3 = · · · = 0 as the consequence of
(
ξ
(2)
N−1

)2 =(
ξ
(2)
N−1

)3 = · · · = 0; the nullity of the correlator is due to the unequal number ofξ (1) and
ξ (2) variables in every term to be averaged. Since

S + δS =
N−1∑

i1,i2,...=0

wi1+i2+···
(
ξ
(1)
i1
− xξ (2)i1 − yξ

(2)
i1−1

)
ξ
(2)
i2
. . . 9i1+i2+···

under the change of variablesξ (1)i → ξ
(1)
i + xξ (2)i + yξ (2)i−1 equation (3.6) can be rewritten

as follows:〈(
ξ
(1)
i1
+ xξ (2)i1 + yξ

(2)
i1−1

)(
ξ
(1)
i2
+ xξ (2)i2 + yξ

(2)
i2−1

)
. . . 9u

×(ξ (1)j1
+ xξ (2)j1

+ yξ (2)j1−1

)(
ξ
(1)
j2
+ xξ (2)j2

+ yξ (2)j2−1

)
. . . 9v

〉 = 0. (3.7)

The coefficient tox2 yields the Bogoljubov-type equality〈
ξ
(1)
i1
ξ
(2)
i2
. . . 9uξ

(1)
j1
ξ
(2)
j2
. . . 9v

〉 = 〈ξ (1)i1 ξ (2)i2 . . . 9uξ
(1)
j2
ξ
(2)
j1
. . . 9v

〉
+ 〈ξ (1)i1 ξ (2)j1

. . . 9uξ
(1)
i2
ξ
(2)
j2
. . . 9v

〉
. (3.8)

The coefficient toy2 (or xy) implies〈
ξ
(1)
i1±1ξ

(2)
i2
. . . 9uξ

(1)
j1±1ξ

(2)
j2
. . . 9v

〉+ 〈ξ (1)i1 ξ (2)i2±1 . . . 9uξ
(1)
j1
ξ
(2)
j2±1 . . . 9v

〉
− 〈ξ (1)i1±1ξ

(2)
j1
. . . 9uξ

(1)
i2±1ξ

(2)
j2
. . . 9v

〉− 〈ξ (1)i1 ξ (2)j1±1 . . . 9uξ
(1)
i2
ξ
(2)
j2±1 . . . 9v

〉
+ 〈ξ (1)i1±1ξ

(2)
j1
. . . 9uξ

(1)
j2±1ξ

(2)
i2
. . . 9v

〉+ 〈ξ (1)i1 ξ (2)j1±1 . . . 9uξ
(1)
j2
ξ
(2)
i2±1 . . . 9v

〉 = 0 (3.9)

where the alternative (+) sign to 1 in subscripts corresponds to the opposite+1 shift of
i1 in (3.5). Notice that the above symmetry is richer for higher correlations owing to the
possibility of larger shifts of site indices inδS.

3.2. Microscopic sum rules

There exist other exact constraints on fermionic correlators, in what follows called
microscopic sum rules, associated with the integration rules for anticommuting variables.

On the level of one-correlators, they are represented by the formula

N−1∑
i2,...,iγ=0

wi1,i2,...,iγ
〈
ξ
(1)
i1
ξ
(2)
i2
. . . ξ

(γ )

iγ
9i1+i2+···+iγ

〉 = 1 (3.10)

valid for all i1 = 0, 1, . . . , N − 1. This relation can be derived by grouping all terms inS
which containξ (1)i1 with a specific value ofi1,

S = S ′ + ξ (1)i1
N−1∑

i2,...,iγ=0

ξ
(2)
i2
. . . ξ

(γ )

iγ
wi1,i2,...,iγ 9i1+i2+···+iγ
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and then performing a series of algebraic operations∫
Dψ Dξ eS =

∫
Dψ Dξ eS

′
(

1+ ξ (1)i1
N−1∑

i2,...,iγ=0

ξ
(2)
i2
. . . ξ

(γ )

iγ
wi1,i2,...,iγ 9i1+i2+···+iγ

)

=
∫
Dψ Dξ eS

′
ξ
(1)
i1

N−1∑
i2,...,iγ=0

ξ
(2)
i2
. . . ξ

(γ )

iγ
wi1,i2,...,iγ 9i1+i2+···+iγ

=
∫
Dψ Dξ eSξ (1)i1

N−1∑
i2,...,iγ=0

ξ
(2)
i2
. . . ξ

(γ )

iγ
wi1,i2,...,iγ 9i1+i2+···+iγ .

Here, we have successively used the commutation nature of the combination
ξ
(1)
i1
ξ
(2)
i2
. . . ξ

(γ )

iγ
9i1+i2+···+iγ , the nullity of the anticommuting integral in the absence ofξ

(1)
i1

in the product ofξ ’s and the possibility of replacingS ′ → S when ξ (1)i1 has already been
factorized.

On the level of two-correlators, the microscopic sum rules are summarized by the
formula

N−1∑
j2,...,jγ=0

wj1+1,j2,...,jγ

〈
ξ
(1)
i1
ξ
(2)
i2
. . . ξ

(γ )

iγ
9i1+i2+···+iγ−1ξ

(1)
j1
ξ
(2)
j2
. . . ξ

(γ )

jγ
9j1+j2+···+jγ+1

〉
= δ1,0

〈
ξ
(1)
i1
ξ
(2)
i2
. . . ξ

(γ )

iγ
9i1+i2+···+iγ

〉− δi1,j1+1
〈
ξ
(1)
j1
ξ
(2)
i2
. . . ξ

(γ )

iγ
9j1+i2+···+iγ

〉
(3.11)

holding for all i1, i2, . . . , iγ , j1 = 0, 1, . . . , N − 1 and1 an integer bounded by

max{−j1, i1+ i2+ · · · + iγ − γ (N − 1)} 6 1 6 min{i1+ i2+ · · · + iγ , N − 1− j1}.
The proof for1 = 0 is the same as in the previous case with the only proviso: there must
be an additional term on the right-hand side of (3.11) which cancels the first one fori1 = j1.
For1 6= 0 andi1 = j1+1, one can interchange the variablesξ (1)i1 ↔ ξ

(1)
j1

(getting the (−)
sign) and then proceed as above. When1 6= 0 and simultaneouslyi1 6= j1 +1, we group
all terms inS containingξ (1)j1+1,

S = S ′′ + ξ (1)j1+1
N−1∑

k2,...,kγ=0

ξ
(2)
k2
. . . ξ

(γ )

kγ
wj1+1,k2,...,kγ 9j1+k2+···+kγ+1

and subsequently factorize the variableξ (1)j1+1. The left-hand side of (3.11) then involves

N−1∑
j2,...,jγ=0

N−1∑
k2,...,kγ=0

wj1+1,j2,...,jγ wj1+1,k2,...,kγ ξ
(1)
j1
ξ
(2)
j2
. . . ξ

(γ )

jγ
9j1+j2+···+jγ+1

×ξ (1)j1+1ξ
(2)
k2
. . . ξ

(γ )

kγ
9j1+k2+···+kγ+1.

This expression is equal to zero: for every configuration of indices{j2, . . . , jγ ; k2, . . . , kγ }
such thatj2 6= k2, . . . , jγ 6= kγ there always exists a conjugate one{j ′2 = k2, . . . , j

′
γ =

kγ ; k′2 = j2, . . . k
′
γ = jγ } with the same absolute value of the prefactor, but the opposite

sign (sinceξ (2)j2
. . . ξ

(γ )

jγ
9j1+j2+···+jγ+1 anticommutes withξ (2)k2

. . . ξ
(γ )

kγ
9j1+k2+···+kγ+1).

The extension of microscopic sum rules to higher correlation orders is straightforward;
they always relate neighbouring correlation orders.
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4. Unitary transformation

Let us pose the following question: provided that the Grassmann variables under
consideration

{
ψ
(α)
i

}
are mapped onto

{
ψ
(α)
i (t)

}
by a nearest-neighbour (unitary)

transformation, defined as

∂ψ
(α)
i (t)

∂t
= aiψ(α)

i+1(t)+ biψ(α)

i−1(t) ψ
(α)
i (t = 0) = ψ(α)

i (i = 0, . . . , N − 1)

(4.1)

with aN−1 = b0 ≡ 0 and t being a free parameter, does there exist a choice of the
coefficients{ai, bi} for which also the composite operators{9i} transform according to
a nearest-neighbour scheme

∂9i(t)

∂t
= ãi9i+1(t)+ b̃i9i−1(t) 9i(t = 0) = 9i [i = 0, . . . , γ (N − 1)] (4.2)

with ãγ (N−1) = b̃0 ≡ 0? The answer is affirmative: it can be readily shown by a direct
computation that if one chooses the as-yet-unspecified{ai, bi} in (4.1) as follows:

ai = a(i + 1) bi = b(N − i) (4.3)

the consequent{9i(t)} fulfil (4.2) with (as-yet-unspecified)

ãi = a(i + 1) b̃i = b[γ (N − 1)+ 1− i]. (4.4)

The transformation is unitary in three cases:

(i) a = 1, b = 0 ‘Up’ (U) transformation
(ii) a = 0, b = 1 ‘Down’ (D) transformation
(iii) a = b = 1 ‘Up–Down’ (UD) transformation.

The U- and D-Jacobians are evidently equal to the unity since the corresponding
transformation matrices are triangular with the unity diagonal, the unitarity of UD-
transformation (which is out of interest in this work) can be checked by a direct calculation.
To summarize: the U-transformation is given by

∂ψ
(α)
i (t)

∂t
= (i + 1)ψ(α)

i+1(t) (i = 0, 1, . . . , N − 2)
∂ψ

(α)

N−1(t)

∂t
= 0 (4.5a)

∂9i(t)

∂t
= (i + 1)9i+1(t) [i = 0, 1, . . . , γ (N − 1)− 1]

∂9γ (N−1)(t)

∂t
= 0. (4.5b)

The D-transformation is defined by

∂ψ
(α)
i (t)

∂t
= (N − i)ψ(α)

i−1(t) (i = 1, . . . , N − 1)
∂ψ

(α)

0 (t)

∂t
= 0 (4.6a)

∂9i(t)

∂t
= [γ (N − 1)+ 1− i]9i−1(t) [i = 1, . . . , γ (N − 1)]

∂90(t)

∂t
= 0. (4.6b)

The boundary conditions for both U- and D-schemes readψ
(α)
i (t = 0) = ψ

(α)
i and

9i(t = 0) = 9i . Note that equations (4.5) and (4.6) are, in fact, two realizations of
one symmetry transformation, related to one another via the chain reversali → N − 1− i.

Now we show how U- and D-transformations induce interrelations among the underlying
Grassmann correlators. Let us start with one-correlators and U-scheme (4.5). Introduce the
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auxiliary quantity

V
(U)
i1,...,iγ

(t) = 1

Z(γ )

∫
Dψ(t)Dξ eSU (t) ξ (1)i1 . . . ξ

(γ )

iγ
9i1+···+iγ−1(t) (4.7a)

SU(t) =
N−1∑

j1,...,jγ=0

ξ
(1)
j1
. . . ξ

(γ )

jγ
wj1,...,jγ 9j1+···+jγ (t) (4.7b)

[Dψ(t) = Dψ ]. V , which is identically equal to zero at arbitraryt , generates the lowest-
order of a correlation hierarchy via

∂V
(U)
i1,...,iγ

(t)

∂t

∣∣∣∣
t=0

= 0 (4.8)

resulting in

0= (i1+ · · · + iγ )
〈
ξ
(1)
i1
. . . ξ

(γ )

iγ
9i1+···+iγ

〉+ N−1∑
j1,...,jγ=0

(j1+ · · · + jγ + 1)

×wj1,...,jγ

〈
ξ
(1)
i1
. . . ξ

(γ )

iγ
9i1+···+iγ−1ξ

(1)
j1
. . . ξ

(γ )

jγ
9j1+···+jγ+1

〉
. (4.9)

With respect to the explicit form of the interaction strength (3.1b), there holds

(j1+ · · · + jγ + 1)wj1,...,jγ = (N − 1− j1)wj1+1,...,jγ + · · · + (N − 1− jγ )wj1,...,jγ+1.

(4.10)

Inserting this into (4.9), the summands have a common structure represented by

N−1∑
j1,...,jγ=0

wj1+1,j2,...,jγ (N − 1− j1)

×〈ξ (1)i1 ξ (2)i2 . . . ξ
(γ )

iγ
9i1+i2+···+iγ−1ξ

(1)
j1
ξ
(2)
j2
. . . ξ

(γ )

jγ
9j1+j2+···+jγ+1

〉
.

According to the microscopic sum rule (3.11), such a two-correlator expression vanishes
for all j1, except forj1 = i1− 1 when it reduces to a one-correlator

−(N − i1)
〈
ξ
(1)
i1−1ξ

(2)
i2
. . . ξ

(γ )

iγ
9i1+i2+···+iγ−1

〉
.

Finally,

(i1+ · · · + iγ )
〈
ξ
(1)
i1
. . . ξ

(γ )

iγ
9i1+···+iγ

〉 = (N − i1)〈ξ (1)i1−1 . . . ξ
(γ )

iγ
9i1+···+iγ−1

〉+ · · ·
+(N − iγ )

〈
ξ
(1)
i1
. . . ξ

(γ )

iγ−19i1+···+iγ−1
〉

(4.11)

where eventual correlators involvingξ (α)−1 are set identically to zero.
For D-transformation (4.6), the lowest level of a correlation hierarchy is generated by

the auxiliary quantity

V
(D)
i1,...,iγ

(t) = 1

Z(γ )

∫
Dψ(t)Dξ eSD(t) ξ (1)i1 . . . ξ

(γ )

iγ
9i1+···+iγ+1(t) (4.12a)

SD(t) =
N−1∑

j1,...,jγ=0

ξ
(1)
j1
. . . ξ

(γ )

jγ
wj1,...,jγ 9j1+···+jγ (t) (4.12b)

via ∂V (D)
i1,...,iγ

(t)/∂t
∣∣
t=0 = 0. Using the equality

[γ (N − 1)+ 1− (j1+ · · · + jγ )]wj1,...,jγ = j1wj1−1,...,jγ + · · · + jγwj1,...,jγ−1 (4.13)
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deduced from (3.1b), the hierarchy can be exactly truncated by adapting the procedure from
the previous U-case, with the result

[γ (N − 1)− (i1+ · · · + iγ )]
〈
ξ
(1)
i1
. . . ξ

(γ )

iγ
9i1+···+iγ

〉
= (i1+ 1)

〈
ξ
(1)
i1+1 . . . ξ

(γ )

iγ
9i1+···+iγ+1

〉+ · · · + (iγ + 1)
〈
ξ
(1)
i1
. . . ξ

(γ )

iγ+19i1+···+iγ+1
〉

(4.14)

where eventual correlators involvingξ (α)N are put to zero.
The generalization of the truncation procedure to higher correlation orders is trivial.

In accordance with the above scenario, choosing the obvious auxiliary generator on the
pth hierarchical level, the microscopic sum rules enable us either to eliminate unwanted
correlators of the(p + 1)-order or to reduce their order by one, and in this way to get a
closed-form equation forp-correlators. Schematically, U-transformation gives

(u+ 1)
〈
ξ
(1)
i1
. . . ξ

(γ )

iγ
9u+1ξ

(1)
j1
. . . ξ

(γ )

jγ
9v . . .

〉
+(v + 1)

〈
ξ
(1)
i1
. . . ξ

(γ )

iγ
9uξ

(1)
j1
. . . ξ

(γ )

jγ
9v+1 . . .

〉+ · · ·
= (N − i1)

〈
ξ
(1)
i1−1 . . . ξ

(γ )

iγ
9uξ

(1)
j1
. . . ξ

(γ )

jγ
9v . . .

〉+ · · ·
+(N − iγ )

〈
ξ
(1)
i1
. . . ξ

(γ )

iγ−19uξ
(1)
j1
. . . ξ

(γ )

jγ
9v . . .

〉
+(N − j1)

〈
ξ
(1)
i1
. . . ξ

(γ )

iγ
9uξ

(1)
j1−1 . . . ξ

(γ )

jγ
9v . . .

〉+ · · ·
+(N − jγ )

〈
ξ
(1)
i1
. . . ξ

(γ )

iγ
9uξ

(1)
j1
. . . ξ

(γ )

jγ−19v . . .
〉+ · · · (4.15)

with u+ v + · · · = i1+ · · · + iγ + j1+ · · · + jγ + · · · − 1, while D-transformation implies

[γ (N − 1)+ 1− u]
〈
ξ
(1)
i1
. . . ξ

(γ )

iγ
9u−1ξ

(1)
j1
. . . ξ

(γ )

jγ
9v . . .

〉
+[γ (N − 1)+ 1− v]

〈
ξ
(1)
i1
. . . ξ

(γ )

iγ
9uξ

(1)
j1
. . . ξ

(γ )

jγ
9v−1 . . .

〉+ · · ·
= (i1+ 1)

〈
ξ
(1)
i1+1 . . . ξ

(γ )

iγ
9uξ

(1)
j1
. . . ξ

(γ )

jγ
9v . . .

〉+ · · ·
+(iγ + 1)

〈
ξ
(1)
i1
. . . ξ

(γ )

iγ+19uξ
(1)
j1
. . . ξ

(γ )

jγ
9v . . .

〉
+(j1+ 1)

〈
ξ
(1)
i1
. . . ξ

(γ )

iγ
9uξ

(1)
j1+1 . . . ξ

(γ )

jγ
9v . . .

〉+ · · ·
+(jγ + 1)

〈
ξ
(1)
i1
. . . ξ

(γ )

iγ
9uξ

(1)
j1
. . . ξ

(γ )

jγ+19v . . .
〉+ · · · (4.16)

with u+ v + · · · = i1+ · · · + iγ + j1+ · · · + jγ + · · · + 1.

5. The method of generating functions

To solve formally iteration sets (4.15) and (4.16), we introduce the generating functions for
generalp-correlators:

Fp(x1, x̄1|x2, x̄2| . . .) =
N−1∑

i1,...,iγ ;j1,...,jγ ;...=0

γ (N−1)∑
u,v,...=0

〈
ξ
(1)
i1
. . . ξ

(γ )

iγ
9uξ

(1)
j1
. . . ξ

(γ )

jγ
9v . . .

〉
×xi111 . . . x

iγ
1γ x̄

u
1x

j1
21 . . . x

jγ
2γ x̄

v
2 . . . (5.1)

wherexi denotes vector(xi1, xi2, . . . , xiγ ). Due to the constrainti1+ · · · + iγ + j1+ · · · +
jγ + · · · = u + v + · · · for nonzero summands in (5.1), the polynomialFp possesses the
scaling property

Fp(x1, x̄1|x2, x̄2| . . .) = Fp
(
µx1,

x̄1

µ

∣∣∣∣µx2,
x̄2

µ

∣∣∣∣ . . .). (5.2)
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U-iteration (4.15) implies forFp(x1, x̄1|x2, x̄2| . . . |xp, x̄p) a PDE of the form
p∑
i=1

(
∂

∂x̄i
+

γ∑
α=0

x2
iα

∂

∂xiα

)
Fp = (N − 1)

p∑
i=1

γ∑
α=0

xiαFp (5.3)

solvable by using the method of characteristics

Fp(x1, x̄1| . . . |xp, x̄p) =
p∏
i=1

γ∏
α=0

(1+ xiα1)N−1

×Fp
(

x1

1+ x11
, x̄1−1

∣∣∣∣ . . . ∣∣∣∣ xp

1+ xp1, x̄p −1
)
. (5.4)

Here, 1 is a free shift parameter such thatxiα1 6= −1 andxi/(1 + xi1) means the
vector with componentsxiα/(1+ xiα1), α = 1, . . . , γ . According to D-iteration (4.16),
Fp(x1, x̄1| . . . |xp, x̄p) also satisfies another linear PDE

p∑
i=1

(
x̄2
i

∂

∂x̄i
+

γ∑
α=0

∂

∂xiα

)
Fp = γ (N − 1)

p∑
i=1

x̄iFp (5.5)

providing

Fp(x1, x̄1| . . . |xp, x̄p) =
p∏
i=1

(1+ x̄i1)γ (N−1)

×Fp
(
x1− 11,

x̄1

1+ x̄11

∣∣∣∣ . . . ∣∣∣∣xp − 11,
x̄p

1+ x̄p1
)

(5.6)

wherex̄i1 6= −1 and1 is theγ -component unity vector.
In the subspace with allxi = xi1, using the notationFp(x11, x̄1| . . . |xp1, x̄p) ≡

Fp(x1, x̄1| . . . |xp, x̄p) with

Fp(x1, x̄1| . . . |xp, x̄p) =
γ (N−1)∑

i1,...,ip;j1,...,jp=0
i1+···+ip=j1+···+jp

〈4i19j1 . . . 4ip9jp 〉xi11 x̄
j1
1 . . . x

ip
p x̄

jp
p (5.7)

the scaling relation (5.2) is written as

Fp(x1, x̄1| . . . |xp, x̄p) = Fp
(
µx1,

x̄1

µ

∣∣∣∣ . . . ∣∣∣∣µxp, x̄pµ
)

(5.8)

and equations (5.4) and (5.6) become, respectively,

Fp(x1, x̄1| . . . |xp, x̄p) =
p∏
i=1

(1+ xi1)γ (N−1)

×Fp
(

x1

1+ x11
, x̄1−1

∣∣∣∣ . . . ∣∣∣∣ xp

1+ xp1, x̄p −1
)

(5.9a)

=
p∏
i=1

(1+ x̄i1)γ (N−1)

×Fp
(
x1−1, x̄1

1+ x̄11

∣∣∣∣ . . . ∣∣∣∣xp −1, x̄p

1+ x̄p1
)
. (5.9b)

Note that these equations are related to one another via the interchangeξ ↔ ψ symmetry,

Fp(x1, x̄1| . . . |xp, x̄p) = Fp(x̄1, x1| . . . |x̄p, xp). (5.10)
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To complete the list ofFp-symmetries, in accordance with the anticommutation relation
(3.3b) the interchange of a couple of variablesx (or a couple ofx̄) induces the factor
(−1)γ ,

Fp(. . . |xi, x̄i | . . . |xj , x̄j | . . .) = (−1)γ Fp(. . . |xj , x̄i | . . . |xi, x̄j | . . .) (5.11a)

= (−1)γ Fp(. . . |xi, x̄j | . . . |xj , x̄i | . . .). (5.11b)

With regard to (2.12d), the relationship between thep-body density andFp reads

np(x1, x̄1| . . . |xp, x̄p)
n
p

0

= 1

Np

p∏
i=1

1

(1+ xi x̄i)γ (N−1)
Fp(x1, x̄1| . . . |xp, x̄p). (5.12)

For p = 1, we have

F1(x, x̄) = (1+ x1)γ (N−1)F1

(
x

1+ x1, x̄ −1
)

(5.13a)

= (1+ x̄1)γ (N−1)F1

(
x −1, x̄

1+ x̄1
)
. (5.13b)

Putting1 = x̄ in (5.13a) or1 = x in (5.13b) and taking into account the scaling (5.8), one
finds

F1(x, x̄) = N(1+ xx̄)γ (N−1) (5.14)

where the prefactor is determined by the normalization condition (3.10). As a result
n1(x, x̄) = n0, i.e. the present algebra confirms the expected homogeneity of the charge
density on the sphere. We add that it is possible to find out from (5.4), (5.6) the more
general functionF1(x, x̄), with the final result for one-correlators〈

ξ
(1)
i1
. . . ξ

(γ )

iγ
9i1+···+iγ

〉 = N(N − 1
i1

)
. . .

(
N − 1
iγ

)
. (5.15)

Rescaling suitably the Grassmann variablesξ
(α)
i by local factors∼ (N−1

i

)
, the consequent

correlators do not depend on the particular configuration of site indices (as in the case of a
complete-star structure).

For p = 2, it holds

F2(x1, x̄1|x2, x̄2) = [(1+ x11)(1+ x21)]
γ (N−1)

×F2

(
x1

1+ x11
, x̄1−1

∣∣∣∣ x2

1+ x21
, x̄2−1

)
(5.16a)

= [(1+ x̄11)(1+ x̄21)]
γ (N−1)

×F2

(
x1−1, x̄1

1+ x̄11

∣∣∣∣x2−1, x̄2

1+ x̄21

)
. (5.16b)

Applying successively (5.16a) and (5.16b) in order to nullify the first two arguments of
F2(x1, x̄1|x2, x̄2), we arrive at

F2(x1, x̄1|x2, x̄2) = [(1+ x1x̄2)(1+ x2x̄1)]
γ (N−1)F2

(
0, 0

∣∣∣∣ x2− x1

1+ x2x̄1
,
x̄2− x̄1

1+ x1x̄2

)
(5.17)

or, equivalently,

n2(x1, x̄1|x2, x̄2) = n2

(
0, 0

∣∣∣∣ x2− x1

1+ x2x̄1
,
x̄2− x̄1

1+ x1x̄2

)
. (5.18)
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In view of the fact that

n2(0, 0|x, x̄)
n2

0

= 1

N2

1

(1+ xx̄)γ (N−1)

γ (N−1)∑
i=γ
〈40904i9i〉(xx̄)i (5.19)

relation (5.18) reflects nothing but the rotational invariance of the two-body density on the
sphere. The last depend only on the angular distance between the particle positions, namely
on tan2(τ12/2) = |x1 − x2|2/[(1+ x1x̄2)(1+ x2x̄1)] (see equation (2.5)). Let us next apply
a couple of transformations, those given by (5.11a) and (5.16b), to F2(0, 0|x, x̄) itself:

F2(0, 0|x, x̄) = (−1)γ F2(x, 0|0, x̄)
= (−1)γ (1+ xx̄)γ (N−1)F2

(
0, 0

∣∣∣∣− x, x̄

1+ xx̄
)
. (5.20)

Since

F2(0, 0|x, x̄) =
γ (N−1)∑
i=γ
〈40904i9i〉(xx̄)i . (5.21)

Equation (5.20) yields a set of linear relations among the coefficients of then2-expansion,

〈40904i9i〉 =
i∑

j=γ
(−1)γ+j

(
γ (N − 1)− j
γ (N − 1)− i

)
〈40904j9j 〉 (5.22)

with i = γ, . . . , γ (N − 1). One can verify directly that only every second relation is
effective. As a by-product, the set of interrelations (5.22) provides, in terms of variabley

defined byxx̄ = y/(1− y), two equivalent series representations of the two-body density:

n2(y)

n2
0

= 1

N2

γ (N−1)∑
i=γ
〈40904i9i〉yi(1− y)γ (N−1)−i (5.23a)

= 1

N2

γ (N−1)∑
i=γ

(−1)γ+i〈40904i9i〉yi. (5.23b)

The analysis of transformation formulae (5.9a) and (5.9b) becomes rather complicated
when proceeding to higher densities, due to the mixing of the shift parameter1 in both {x}
and{x̄} variable sets and due to the finite cut-off of thenp-series. To avoid these problems,
we shall pass in the next section to theN →∞ limit.

6. The thermodynamic limit of the fluid regime

For a fixed charge densityn0, the thermodynamicN →∞ limit simultaneously means the
divergence ofR, i.e. the transition from the sphere to an infinite plane. With the north
pole taken as the origin of the coordinate system, the spherical angleθ is related to the
corresponding Euclidean coordinater by θ ∼ |r|/R (in the limit R → ∞), and so the
projection variablex = tan(θ/2) exp(iφ) readsx ∼ r/2R. It is convenient to work in the
units of γπn0 = 1 when

x = r√
γN

. (6.1)

To eliminate divergent factors innp (2.12d) after substituting (6.1), we rescaleξ as follows:

ξ
(α)
i = (γN)i+1/γ ω

(α)
i . (6.2)
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Consequently,

np(r1, r̄1| . . . |rp, r̄p) = (γ n0)
p exp

(
−

p∑
i=1

ri r̄i

)
×

∞∑
i1,j1,...,ip,jp=0

(i1+···+ip=j1+···+jp)

〈�i19j1 . . . �ip9jp 〉ri11 r̄
j1
1 . . . r

ip
p r̄

jp
p (6.3)

where�’s are the composite variables,�i =
∑

i1+···+iγ=i ω
(1)
i1
. . . ω

(γ )

iγ
. The averaging is

defined over an infinite set of Grassmann variablesω,ψ with the action

S̃(ω,ψ) =
∞∑
i=0

�iw̃i9i (6.4a)

w̃i = lim
N→∞

i![γ (N − 1)− i]!
[γ (N − 1)+ 1]!

(γN)i+1 = i! (6.4b)

Notice that the formula for the multi-particle densities (6.3) as well as the one for the
coupling strength (6.4b) correspond to

w̃(z, z̄) = 1

π
e−zz̄ (6.5)

i.e. the Boltzmann factor of the potential generated by a neutralizing background with
circular symmetry (in the units ofγπn0 = 1).

The generating function

Fp(r1, r̄1| . . . |rp, r̄p) =
∞∑

i1,j1,...,ip,jp=0
(i1+···+ip=j1+···+jp)

〈�i19j1 . . . �ip9jp 〉ri11 r̄
j1
1 . . . r

ip
p r̄

jp
p (6.6)

differs from Fp(x1, x̄1| . . . |xp, x̄p) only by a coordinate-independent factor. That is why
the counterparts of transformation formulae (5.9a) and (5.9b), with appropriately scaled
1→ 1/

√
γN , take place in the limitN →∞,

Fp(r1, r̄1| . . . |rp, r̄p) = exp

(
1

p∑
i=1

ri

)
Fp(r1, r̄1−1| . . . |rp, r̄p −1) (6.7a)

= exp

(
1

p∑
i=1

r̄i

)
Fp(r1−1, r̄1| . . . |rp −1, r̄p). (6.7b)

The scaling and symmetry relations (5.8), (5.10) and (5.11) are not touched by the
thermodynamic limit as well:

Fp(r1, r̄1| . . . |rp, r̄p) = Fp
(
µr1,

r̄1

µ

∣∣∣∣ . . . ∣∣∣∣µrp, r̄pµ
)

(6.8)

= Fp(r̄1, r1| . . . |r̄p, rp) (6.9)

Fp(. . . |ri, r̄i | . . . |rj , r̄j | . . .) = (−1)γFp(. . . |rj , r̄i | . . . |ri, r̄j | . . .) (6.10a)

= (−1)γFp(. . . |ri, r̄j | . . . |rj , r̄i | . . .). (6.10b)

Equations (6.7)–(6.10) are summarized by

exp

(
− 1

p

p∑
i=1

ri

p∑
j=1

r̄j

)
Fp(r1, r̄1| . . . |rp, r̄p) = γ−p

p∏
(i<j)=1

(ri − rj )γ (r̄i − r̄j )γ

×
∞∑
n=0

fn(r1, . . . , rp)fn(r̄1, . . . , r̄p). (6.11)
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Here,fn(r1, . . . , rp) is a homogeneous polynomial of thenth degree inr1, . . . , rp, symmetric
with respect to the interchange of an arbitrary pairri ↔ rj ,

fn(. . . , ri, . . . , rj , . . .) = fn(. . . , rj , . . . , ri , . . .) (6.12)

and invariant with respect to a uniform shift in allr,

fn(r1, . . . , rp) = fn(r1−1, . . . , rp −1). (6.13)

Finally, regarding (6.3) and (6.6), equation (6.11) can be transcribed to

np(r1, r̄1| . . . |rp, r̄p)
n
p

0

=
p∏

(i<j)=1

r
2γ
ij exp

(−r2
ij /p

) ∞∑
n=0

fn(r1, . . . , rp) fn(r̄1, . . . , r̄p) (6.14)

with r2
ij = |ri − rj |2.

We have not found in the mathematical literature any analysis concerning the general
form of homogeneous polynomialsfn(r1, . . . , rp) with properties (6.12) and (6.13). We
have therefore generated by computer, for small fixedp, a broad set offn(r1, . . . , rp) with
n going to large integers and in this way revealed the following structure:

fn(r1, . . . , rp) =
∞∑

n2,...,np=0
(2n2+···+pnp=n)

cn2,...,np

p∏
q=2

I
nq
q (r1, . . . , rp). (6.15)

Here, cn2,...,np are arbitrary-valued coefficients and{Iq(r1, . . . , rp)}pq=2 is the set of
homogeneous polynomials (subscriptq denotes the polynomial degree) playing the role
of ‘elementary invariants’. Their number,p − 1, is intuitively determined by the1-shift
property (6.13) which effectively decreases the number of independent variables by one.
For everyp, the highest-degree elementary invariant takes the form

Ip(r1, . . . , rp) =
p∏
i=1

[
(p − 1)ri −

∑
j 6=i

rj

]
. (6.16)

A lower-degree elementary invariantIq(r1, . . . , rp) with q < p is expressible in terms of
the highest-degree elementary invariant ofq variables according to the permutation rule

Iq(r1, . . . , rp) =
p∑

(i1<i2<···<iq)=1

Iq(ri1, . . . , riq ). (6.17)

Like for example,

I2(r1, r2) = −(r1− r2)2 (6.18)

I2(r1, r2, r3) = −
[
(r1− r2)2+ (r1− r3)2+ (r2− r3)2

]
(6.19a)

I3(r1, r2, r3) = (2r1− r2− r3)(2r2− r1− r3)(2r3− r1− r2) (6.19b)

I2(r1, r2, r3, r4) = −
[
(r1− r2)2+ (r1− r3)2+ (r1− r4)2

+(r2− r3)2+ (r2− r4)2+ (r3− r4)2
]

(6.20a)

I3(r1, r2, r3, r4) = (2r1− r2− r3)(2r2− r1− r3)(2r3− r1− r2)
+(2r1− r2− r4)(2r2− r1− r4)(2r4− r1− r2)
+(2r1− r3− r4)(2r3− r1− r4)(2r4− r1− r3)
+(2r2− r3− r4)(2r3− r2− r4)(2r4− r2− r3) (6.20b)
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I4(r1, r2, r3, r4) = (3r1− r2− r3− r4)(3r2− r1− r3− r4)
×(3r3− r1− r2− r4)(3r4− r1− r2− r3) (6.20c)

etc. Clearly, the choice of elementary invariants is ambiguous, e.g. alsoIq(r1, . . . , rp) +
I2(r1, . . . , rp) Iq−2(r1, . . . , rp) + · · · can be chosen as an elementary invariant, but, with
regard to (6.15), this ambiguity is irrelevant. We have checked the validity of the above
structure up top = 6, and do not expect any extra complications for higherp.

Inserting (6.15) into (6.14) we conclude that

np(r1, r̄1| . . . |rp, r̄p)
n
p

0

=
p∏

(i<j)=1

r
2γ
ij exp

(−r2
ij /p

) ∞∑
n2,...,np;n′2,...,n′p=0

2n2+···+pnp=2n′2+···+pn′p

×cn2,...,np cn′2,...,n′p

p∏
q=2

I
nq
q (r1, . . . , rp)I

n′q
q (r̄1, . . . , r̄p). (6.21)

In particular,

n2(r1, r̄1|r2, r̄2)
n2

0

= r2γ
12 exp

(−r2
12/2

) ∞∑
n=0

c2
nr

4n
12 (6.22)

n3(r1, r̄1|r2, r̄2|r3, r̄3)
n3

0

= r2γ
12 r

2γ
13 r

2γ
23 exp

[−(r2
12+ r2

13+ r2
23)/3

]
×

∞∑
n2,n3,n

′
2,n
′
3=0

(2n2+3n3=2n′2+3n′3)

cn2,n3cn′2,n
′
3

×[(r1− r2)2+ (r1− r3)2+ (r2− r3)2]n2

×[(2r1− r2− r3)(2r2− r1− r3)(2r3− r1− r2)]n3

×[(r̄1− r̄2)2+ (r̄1− r̄3)2+ (r̄2− r̄3)2]n′2
×[(2r̄1− r̄2− r̄3)(2r̄2− r̄1− r̄3)(2r̄3− r̄1− r̄2)]n′3 (6.23)

(without any loss of rigour, we omit the (−) sign in I2), and so on.

7. Concluding remarks

In this paper, using a fermionic representation of the 2D OCP we have established the
invariant structure of generalp-body densities, see (6.14) or (6.21). It is seen that the
invariant-structure property is realized separately on the{r} and{r̄} variable sets. Although
the treatment was restricted to integerγ , it is reasonable to assume its validity for all
real γ in the fluid-phase interval. From a gnoseological point of view, the existence of the
anticommuting-field theory with the non-Gaussian action, providing the correlation hierarchy
truncated exactly at each level, deserves attention.

The invariant structure of multi-body densities can be used as a test bench for trustworthy
approaches. We have tested standard methods like the weak-coupling Debye–Hückel [7]
and intermediate-coupling [16] theories based on approximative truncations of the BBGKY
hierarchy of equations, the strong-coupling hypernetted-chain theory [17] as well as an
approach motivated by the exact result at0 = 2 [18]. None of the methods passed the test,
even on the lowest level of pair correlations. The requirement of the preservation of the
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invariant form of particle densities might initiate a reasonable decoupling procedure, but
this goes beyond the scope of this work.

Due to the transparent algebraic technique, the method presented could contribute to
other topics in the 2D OCP theory, too. To be more specific, we have found rigorously
the fourth-momentum (compressibility) condition simply by using the invariant form of the
two-body density (on the extended(r1, r̄1|r2, r̄2)-space) and the microscopic sum rule (3.11)
bounding together one- and two-correlators. The integrable subspace in the extended space,
given by the microscopic sum rule, transforms itself by the invariant-property of the two-
body density to a manifold which determines completely the fourth moment and partially (by
producing exact relations among the ‘building parts’) higher moments. This is certainly a
progress in comparison with the original proof [6], based on the BBGKY-hierarchy analysis
up to the four-body density under the assumption of clustering hypothesis. It would be
interesting to investigate the interference of the invariant form of particle densities with
the microscopic sum rules on higher levels, with a possible effect on the two-body density
itself. We plan to proceed also along this line in the future.
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